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Introduction

“... biological systems are characterised by their regulatory and adaptive
properties, from homeostatic mechanisms which maintain constant output
levels to switching between alternative substrates or developmental pathways.
Regulatory mechanisms including thresholds, allosteric interactions and
feedback in gene transcription networks, metabolic pathways, signal
transduction and intercellular interactions are defining biological
characteristics - almost everything that happens in life boils down to
enzyme-catalysed reactions.”
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Modeling Approaches
- Turner et al., Comp. Bio. Chem. (2004).

Directed graphs in which molecules are vertices and the reactions are the
edges;

Bayesian networks in which the vertices correspond to random variables
that describe, for example, a gene expression while the network defines a

joint probability density function;

Boolean networks in which a biological object is either in an on or off state;
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Where does stochastic simulation fit in?

Three types of modeling regimes: discrete and stochastic, continuous and
stochastic, and continuous and deterministic regimes.

Deterministic: the law of mass action.

Stochastic: the chemical master equation.




MBJC 5

Where does stochastic simulation fit in?

Three types of modeling regimes: discrete and stochastic, continuous and
stochastic, and continuous and deterministic regimes.

Deterministic: the law of mass action.

Stochastic: the chemical master equation.




MBJC 6

Outline

Introduction: Where does stochastic simulation fit in?

Follow Gillespie’s derivation of the algorithm.

Look at some examples.




MBJC 7

The Chemical Master Equation

The master equation is the time-evolution equation for the function P(X, ).
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The Chemical Master Equation

The master equation is the time-evolution equation for the function P(X, ).

If there are M different reactions (events) then we have

I M 1 M
P(X,t+dt)=P(X,t) [1- ) audt| + ) Bt
p=1 p=1
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Random Walk on an /N-Dimensional Grid

So if we have a system with only 3 molecular species (R, L, and T'), we model
It as a Markov jump process where the system is doing a random walk on a
3-dimensional grid.

R.L.T+1
(R.L,T+1) RL+1.T)
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The probability that no event occurs:

then we have
Po(t + dt) = Pg(t)(]. o aodt)
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The Reaction Probability Density Function

So we have

P(r,p)dr = Py(1)a,dr

—anT

= e “Ya,dr
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_ a
= qoe 7 | £ ) dr
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The Reaction Probability Density Function

So we have

P(r,p)dr = Py(1)a,dr

—anT
= @ 0

a,dr

_ a
= qoe 7 | £ ) dr
ao




Schematic of the Density Function
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Our Distribution Functions
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A Stochastic Simulation
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A Stochastic Simulation
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Improvements...

Bortz, Kalos, and Lebowitz, J. Comp. Phys. (1975). - Speed up
computations for Ising spin systems by accounting for priori probability of
changing spins before, rather than after, choosing the spin or spins to

change.

Turner, Schnell, and Burrage, Comp. Bio. Chem. (2004). - Include
fluctuations caused by the structural organisation of the cytoplasm and the
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Conclusions

Stochastic effects are important in biological processes.
The Gillespie algorithm is a method for simulating stochastic processes.

This algorithm is easy to implement.




MBJC 21

References

Bortz, A.B., Kalos, M.H., and Lebowitz, J.L. (1975) A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comp.
Phys. 17, 10-18.

Burrage, K., Tian, T., and Burrage, P. (2004) A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys.
Mol. Biol. 85, 217-234.

Gillespie, D.T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. of
Comp. Phys. 22, 403-434.

Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340-2361.

Heuett, W.J. and Qian, H. (2005) A stochastic model of oscillatory blood testosterone levels. Bull. Math. Bio. submitted.




